Copied to
clipboard

G = C625Dic3order 432 = 24·33

4th semidirect product of C62 and Dic3 acting via Dic3/C2=S3

non-abelian, soluble, monomial

Aliases: C625Dic3, (C3×A4)⋊C12, (C6×A4).C6, C6.7S4⋊C3, C6.9(C3×S4), (C3×C6).6S4, C32⋊A41C4, (C2×C62).7S3, C321(A4⋊C4), C22⋊(C32⋊C12), C23.(C32⋊C6), C2.1(C62⋊S3), C3.3(C3×A4⋊C4), (C2×C32⋊A4).1C2, (C22×C6).6(C3×S3), (C2×C6).4(C3×Dic3), SmallGroup(432,251)

Series: Derived Chief Lower central Upper central

C1C22C3×A4 — C625Dic3
C1C22C2×C6C3×A4C6×A4C2×C32⋊A4 — C625Dic3
C3×A4 — C625Dic3
C1C2

Generators and relations for C625Dic3
 G = < a,b,c,d | a6=b6=c6=1, d2=c3, cac-1=ab=ba, dad-1=a4b3, cbc-1=a3b4, dbd-1=a3b2, dcd-1=c-1 >

Subgroups: 449 in 82 conjugacy classes, 18 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, C6, C6, C2×C4, C23, C32, C32, Dic3, C12, A4, C2×C6, C2×C6, C22⋊C4, C3×C6, C3×C6, C2×Dic3, C2×C12, C2×A4, C22×C6, C22×C6, He3, C3×Dic3, C3⋊Dic3, C3×A4, C3×A4, C62, C62, C6.D4, C3×C22⋊C4, A4⋊C4, C2×He3, C6×Dic3, C6×A4, C6×A4, C2×C62, C32⋊C12, C32⋊A4, C3×C6.D4, C6.7S4, C2×C32⋊A4, C625Dic3
Quotients: C1, C2, C3, C4, S3, C6, Dic3, C12, C3×S3, S4, C3×Dic3, A4⋊C4, C32⋊C6, C3×S4, C32⋊C12, C3×A4⋊C4, C62⋊S3, C625Dic3

Smallest permutation representation of C625Dic3
On 36 points
Generators in S36
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(1 4 5 2 3 6)(7 10 12 8 9 11)(13 17 15 16 14 18)(19 24 21 23 20 22)(25 27 29)(26 28 30)(31 33 35)(32 34 36)
(1 19 32 2 23 35)(3 20 34 4 24 31)(5 21 36 6 22 33)(7 16 25 8 13 28)(9 17 27 10 14 30)(11 15 26 12 18 29)
(1 7 2 8)(3 12 4 11)(5 9 6 10)(13 35 16 32)(14 33 17 36)(15 31 18 34)(19 28 23 25)(20 26 24 29)(21 30 22 27)

G:=sub<Sym(36)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,4,5,2,3,6)(7,10,12,8,9,11)(13,17,15,16,14,18)(19,24,21,23,20,22)(25,27,29)(26,28,30)(31,33,35)(32,34,36), (1,19,32,2,23,35)(3,20,34,4,24,31)(5,21,36,6,22,33)(7,16,25,8,13,28)(9,17,27,10,14,30)(11,15,26,12,18,29), (1,7,2,8)(3,12,4,11)(5,9,6,10)(13,35,16,32)(14,33,17,36)(15,31,18,34)(19,28,23,25)(20,26,24,29)(21,30,22,27)>;

G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,4,5,2,3,6)(7,10,12,8,9,11)(13,17,15,16,14,18)(19,24,21,23,20,22)(25,27,29)(26,28,30)(31,33,35)(32,34,36), (1,19,32,2,23,35)(3,20,34,4,24,31)(5,21,36,6,22,33)(7,16,25,8,13,28)(9,17,27,10,14,30)(11,15,26,12,18,29), (1,7,2,8)(3,12,4,11)(5,9,6,10)(13,35,16,32)(14,33,17,36)(15,31,18,34)(19,28,23,25)(20,26,24,29)(21,30,22,27) );

G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(1,4,5,2,3,6),(7,10,12,8,9,11),(13,17,15,16,14,18),(19,24,21,23,20,22),(25,27,29),(26,28,30),(31,33,35),(32,34,36)], [(1,19,32,2,23,35),(3,20,34,4,24,31),(5,21,36,6,22,33),(7,16,25,8,13,28),(9,17,27,10,14,30),(11,15,26,12,18,29)], [(1,7,2,8),(3,12,4,11),(5,9,6,10),(13,35,16,32),(14,33,17,36),(15,31,18,34),(19,28,23,25),(20,26,24,29),(21,30,22,27)]])

38 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F4A4B4C4D6A6B···6G6H···6M6N6O6P12A···12H
order1222333333444466···66···666612···12
size11332332424241818181823···36···624242418···18

38 irreducible representations

dim11111122223333666666
type+++-++-+-
imageC1C2C3C4C6C12S3Dic3C3×S3C3×Dic3S4A4⋊C4C3×S4C3×A4⋊C4C32⋊C6C32⋊C12C62⋊S3C62⋊S3C625Dic3C625Dic3
kernelC625Dic3C2×C32⋊A4C6.7S4C32⋊A4C6×A4C3×A4C2×C62C62C22×C6C2×C6C3×C6C32C6C3C23C22C2C2C1C1
# reps11222411222244111212

Matrix representation of C625Dic3 in GL9(𝔽13)

400000000
040000000
009000000
000100000
000130000
000409000
000000100
000000130
000000409
,
1200000000
010000000
0012000000
000900000
000090000
000009000
000000300
000000030
000000003
,
0120000000
0012000000
1200000000
000120000
0000121000
0000120000
000000102
0000000012
0000000112
,
800000000
008000000
080000000
000000100
000000010
000000001
000100000
000010000
000001000

G:=sub<GL(9,GF(13))| [4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,1,1,4,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,1,1,4,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,9],[12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,3],[0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,12,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,12,12],[8,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0] >;

C625Dic3 in GAP, Magma, Sage, TeX

C_6^2\rtimes_5{\rm Dic}_3
% in TeX

G:=Group("C6^2:5Dic3");
// GroupNames label

G:=SmallGroup(432,251);
// by ID

G=gap.SmallGroup(432,251);
# by ID

G:=PCGroup([7,-2,-3,-2,-3,-3,-2,2,42,675,682,2524,9077,782,5298,1350]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=c^6=1,d^2=c^3,c*a*c^-1=a*b=b*a,d*a*d^-1=a^4*b^3,c*b*c^-1=a^3*b^4,d*b*d^-1=a^3*b^2,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽